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LETTER TO THE EDITOR

Burgers’ model of turbulence as a stochastic process

H P Breuer and F Petruccione

Albert-Ludwigs-Universitdt, Fakultdt fiir Physik, Hermann-Herder Strasse 3, W-7800
Freiburg i. Br., Federal Republic of Germany

Received 4 February 1992, in final form 31 March 1992

Absiraci. A recently proposed mesoscopic descripiion of fiuid dynamics leads to a new
approach to turbulence. In contrast to the classical statistical theory of turbulence the
new approach introduces a probabilistic lime evolution of the random velocity governed
by a master equation. The mesoscopic approach is explained by means of the (1 + 1)-
dimensional Burgers’ model of turbulence. By a continuous time stochastic simulation
realizations of turbulent velocity fields are generated. Correlation functions and energy
spectra are evaluated from appropriate ensemble averages.

It is well known that models of homogencous turbulence often rely upon statistical
tools [1, 2]. In principle, statistical concepts are introduced in the theory only by
considering random initial ensembles of velocity ficlds. However, the time evolution
of each member of the ensemble is governed by the deterministic Navier-Stokes
equation.

In this letter a mesoscopic approach to homogeneous turbulence is suggested
which, in contrast to the classical theory, regards the velocity itself as a discrete
stochastic process. The latter is defined by a master equation which replaces the
deterministic time evolution expressed by the Navier-Stokes equation. In doing so,
an inherently stochastic model of turbulence can be formulated. An initial ensem-
ble of velocity fields evolves probabilistically in time. One of the main advantages
of this formulation of fuid dynamics is the following: having defined a stochastic
process underlying the dynamics of fluid motion, very efficient methods of stochastic
simulation can be employed in order to generate realizations of the random velocity
chatacterizing the turbulent flow.

The new approach is introduced by means of the (1 + 1)-dimensional Burgers’
mode] [3] of homogeneous turbulence which is known to show the main characteristic
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features of boih the noniinear inertial term and the wiscosity term of the Navier—
Stokes equation. Burgers proposed the egquation

du uc’)u _18%u 1
at 8r R 8xzx? O

where u is the velocity field and R denotes the Reynolds number, as a simple
paradigmatic model of turbulence [4, 5]. The nonlinear inertial term is known to lead
to steep gradients of velocity as time evolves. On the other hand, the viscous term
tends to smear out sudden changes in the velocity. For large Reynolds numbers the
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two effects lead to the formation of a shock-wave structure which is mainly responsible
for the behaviour of the energy spectrum E(k) of Burgers’ turbulence model, ie.
E(k) ~ k72

The mesoscopic approach we suggest in this letter is not based on the solutions
of Burgers’ equation as a partial differential equation. On the contrary, the model
of homogeneous turbulence will be investigated starting from the stochastic process
whose ensemble average obeys Burgers’ equation. The construction of such a stochas-
tic process has already been given in detail [6-8] and will therefore only be sketched
here in order to be self-contained.

In the mesoscopic approach physical space is divided into cells of width 6! which
are labelled by the integer index A. The fundamental concept behind this approach
is to interpret the velocity field u(x,,t) appearing in Burgers’ equation as the ex-
pectation value of a discrete integer valued stochastic process N (t)

u(zy, 1) =bu (N}(t)). )

In the above equation a mesoscopic velocity scale §u has been introduced which
defines the smallest possible changes of the velocity. The stochastic process N} (t)
is completely specified by the joint probability distribution P{{N2},t) which is the
probability at time ¢ of finding the set of numbers { N} }. The time evolution of the

joint probability distribution P is given by the following master equation [6]
apr 1 -1 A -1 A
37 = WZ [(ExIEx 1) N}y + (Ex Ex—1) N P
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where the shift operators E, are defined by

E,F(...,N} ..)=F(..,N)+1,..)

-1 A \ C))
E;'F(...,N),..)=F(...,N})=1,..)).

By construction, the equations for the expectation values u{N>}} obtained from the
above master equation by taking the ‘thermodynamic limit’

u — 0 and 6uN?} = constant (5)

and the limit §{ — 0 lead to Burgers’ equation (1).

The master equation (3) was constructed within a many-particle picture. Since
the stochastic process N is integer valued it can be interpreted as the number of
fictitious velocity particles situated in cell A. Furthermore, the transitions of the states
of the fluid may be viewed as one-particle jumps from cell A to a neighbouring one.
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Within this picture of a many-particle system, a positive number N} > 0 is
regarded as the number N}, of velocity particles; likewise, a negative number N)<
0 is interpreted as the number | N}_ | of antiparticles of velocity, ie. we have
N2 = N}, + N}_. The fundamental importance of this picture immediately appears
by interpreting the different terms in the master equation. Namely, the first two
terms on the right-hand side describe the diffusion of a collective system of velocity
particles and antiparticles, that is, a collective random walk, whereas the last two terms
represént ihe convection of veiocity particies and antipariicies induce a noniinear seii-
interaction of the latter. The rate at which one velocity particle jumps from one cell
A to a neighbouring one is proportional to the number of pairs of velocity particles
N} in the cell \. Summing up, the many-particle picture allows the formulation of
diffusion, as well as convection, in terms of one-step processes where cach particle or
antiparticle may jump only to a neighbouring cell.

It should be noted that the master equation (3) is an equation for the transition
probability of the stochastic process N} (t). Only by fixing an appropriate initial
probability distribution can one extract from it information about the probability
distribution of different states of the system. Thus, this formalism naturally allows
one to impose initial conditions in a probabilistic sense.

Let us now turn our attention to the application of the mesoscopic description of
the dynamics of fluids to the problem of turbulence. In order to model homogeneous
turbulence it is first necessary to implement appropriate boundary and initial condi-
tions of the velocity. Firstly, we impose periodic boundary conditions by dividing the
interval [0,2] in a number M + 1 of cells labelled by the index A =0,1,2,..., M
(ie. 61 =2/(M 4 1) ) and by identifying the number NM+! of velocity particles in
the (M + 1)th cell with the number of particles N? in the Oth cell, that is

NY+ (1) = NJ(1). (6)

The statistical initial-value problem typical for homogeneous turbulence states that
the random variables §u N} (0) should be uniformly distributed between the nor-
malized velocity maxima —1 and +1. By introducing an initial correlation length !
an appropriate initial condition reads

k : i =
No+ (0):mt(-6£u) k=0,1,2,...,0—1 7
where the 7, for ¢ = 0,{,2{,..., are independent random numbers uniformly
distributed over the interval [-1,+1] and the function int(y) denotes the integer

part of y.

It is clear, that as a consequence of the imposed initial condition (7) the mean
value of the wvelocity (2) is identically zero. Thus, the physical properties expressing
the character of homogeneous turbulence are directly related to higher moments of
the stochastic process N} (), and specially to the fluctuations naturally arising in
the system. In our numerical investigations we studied the time development of the
velocity correlation function Q(g:,t) which in our formalism is consequently defined
as a second moment of the stochastic process N ()

Q1) 1= SuB(NDFE() NN (2)) . 3
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The correlation Q(p,t) is computed assuming spatial homogeneity by taking the
space average

2 M
Qurt) = g SUNIPHONN(D) ©
A=0

It might be interesting to note that the so-called Loitsiansky constant [1] C; which
is defined in our formalism by the equation

1 M
Cp:= W;Q(”’” (10)

is exactly conserved. This follows from the fact that C; is proportional to the
expectation value of the square of the total number of velocity particles. This total
particle number remains strictly constant since the above master equation does not

contain any source or sink for velocity particles. Furthermore, it can be shown from
the master equation (3) that Taylor’s relation [1] which in our formalism reads
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Figure 1. Time developmemt of a realization of the slochastic process N underlying
the masier equation (3) with random initial condition (7) for the Reynolds number
2 = 1000. The realization is shown at three different times: ¢, = 0.0 (dotted curve),
ty = 0.2 (broken curve), and ¢4 = 0.8 (full curve). For the simulation we have chosen

Su = 0.001, M = 200, and { = 5. Note, that in this picture z = §I A= 2A/(M +1},
where A=10,1,2,..., M+ 1.
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is also satisfied up to terms of order O(41%). Finally, an important quantity i the
energy spectrum given by the equation

M2
Bk, 1) = 57 3 Qast) cos(rkn) (12
u=0

Having fixed the boundary and the initial conditions the dynamics of the system
can now be studied by means of the method of stochastic simulation using stochastic
time steps {7, 9]. This method is particularly suited for the investigation of high-
dimensional systems governed by master equations. In stochastic simulations one
generates a sufficiently large number of realizations of the stochastic process underly-
ing the master equation (3). The physical quantities defined above are then evaluated
as time dependent ensemble averages.

In figure 1 we display one realization of the stochastic process defined by the
master equation (3) and the random initial condition (7) for the Reynolds number
R = 1000 for three different times: t, = 0.0, {; = 0.2, and ¢, = 0.8. The
initial random velocity configuration { N} (0)} develops a typical shock wave structure
consisting of smoothly increasing ramps followed by sharp shocks. For longer times,
the velocity decays due to dissipation.
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Figure 2. The velocity correlation function @{ u, ¢) for the Reynolds number R = 1000
evaluated according Lo equation (9) by averaging over 150 realizations [or four different
times: t; = 0.2 (dotled curve), tz = 0.4 (full curve), t3 = 0.6 (broken curve), and
t4 = 0.8 {chain curve). For the stochastic simulation we have chosen M = 200, I =5,
and $u = 0.001.

In figure 2 we show the correlation function evaluated according to (9) for four
different times: ¢, = 0.2, {, = 0.4, t3 = 0.6, and {, = 0.8. As can be seen, the
correlation function exhibits the typical properties which are known from the theory
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of homogeneous turbulence. Furthermore, we numerically checked Taylor's relation
by determining the energy dissipated between the times £ = 0.7 and 1 = 0.8 and by
comparing it with the corresponding time integral of the curvature of the correlation
function. The mean relative deviation between these two quantities was found to be
less than 1%.
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Figure 3. The normalized energy spectrum FE{k,¢)/E{0,t} computed according to
equation (12) for four different times: ¢ = 0.2, 2, = 0.4, t3 = 0.6, and {4 = 0.8,
The parameters of the simulation were chosen as in the preceding figure.

In figure 3 we present the normatized energy speetrum E(k,t)/ E(0,1) for R =,
1000 at the above times 1,, t,, t,, and ¢, as a function of the wavenumber k. The
typical power law behaviour of the energy spectrum, E(k) ~ k=2, can be observed.
This well known theoretical fact follows directly from the shock structure and reflects
the presence of an energy cascade in this model.

In this letter we have shown how 10 attack the problem of homogeneous turbu-
lence within the framework of a recently proposed mesoscopic description of fluid
dynamics. Thus, a diserete stochastic process has been constructed which allows a
purely probabilistic description of Burgers’ turbulence model. Having properly defined
physical quantities as moments of the underlying stochastic process the mesoscopic
approach reproduces well known theoretical results. Obviously, the same approach
can be applied to turbulent fuid motion in higher dimensions as will be shown in
later work.
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