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LE'ITER TO THE EDITOR 

Burgers' model of turbulence as a stochastic process 

H P Breuer and F Petruccione 
Alben-Ludwigs-Univenitll, Fakulllt fur Physik, Hermann-Herder Slrasse 3, W-7800 
Freiburg i. Br.. Federal Republic of Germany 

Received 4 February 1992, in final form 31 March 1992 

Abbsiraei A recenriy proposed mevlscopic descripiion ai iiuid ciyynamica ieads io a new 
approach lo lurbulenee. In contrast lo the classical statistical theay of turbulence the 
new approach introduces a probabilistic time evolution of Ihe random velocity govemed 
by a master equation. ?he mesosmpic approach & explained by means of Ihe (1  + 1)- 
dimensional Burgen' model of turbulence. By a continuous time stochastic Simulation 
realizations of turbulent velocity fields are generated. Correlation functions and energy 
spectra are evalualed from appropriate ensemble averages. 

It is well known that models of homogeneous turbulence often rely upon statistical 
tools [l, 21. In principle, statistical concepts are introduced in the theory only by 
considering random initial ensembles of velocity fields. However, the time evolution 
of each member of the ensemble is governed by the deterministic NavierStokes 
equation. 

In this letter a mesoscopic approach to homogeneous turbulence is suggested 
which, in contrast to the classical theory, regards the velocity itself as a discrete 
stochastic process. The latter is defined by a master equation which replaces the 
deterministic time evolution expressed by the Navier-Stokes equation. In doing so, 
an inherently stochastic model of turbulence can be formulated. An initial ensem- 
ble of velocity fields evolves probabilistically in time. One of the main advantages 
of this formulation of fluid dynamics is the following: having defined a stochastic 
process underlying the dynamics of fluid motion, vety efficient methods of stochastic 
simulation can be employed in order to generate realizations of the random velocity 
characterizing the turbulent flow. 

The new approach is introduced by means of the (1 + 1)dimensional Burgers' 
model [3] of homogeneous turbulence which is known to show the main characteristic 
features oi both the noniinear ineriiai term and iirc viscosity term of the Navier- 
Stokes equation. Burgers proposed the equation 

where U is the velocity field and R denotes the Reynolds number, as a simple 
paradigmatic model of turbulence [4, 51. The nonlinear inertial term is known to lead 
to steep gradients of velocity as time evolves. On the other hand, the viscous term 
tends to smear out sudden changes in the velocity. For large Reynolds numbers the 
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two effects lead to the formation of a shock-wave structure which is mainly responsible 
for the behaviour of the energy spectrum E( k) of Burgers’ turbulence model, ie. 

The mesoscopic approach we suggest in this letter is not based on the solutions 
of Burgers’ equation as a partial differential equation. On the contrary, the model 
of homogeneous turbulence will be investigated starting from the stochastic process 
whose ensemble average obeys Burgers’ equation. The construction of such a stochas- 
tic process has already been given in detail [a] and will therefore only be sketched 
here in order to be self-contained. 

In the mesoscopic approach physical space is divided into cells of width 61 which 
are labelled by the integer index A. The fundamental concept behind this approach 
k to interpret the velocity field u ( z h , t )  appearing in Burgers’ equation as the ex- 
pectation value of a discrete integer valued stochastic process N , ” ( t )  

E( k) .., IC-’. 

u(zh , t )  = 6u ( N ; ( t ) ) .  (2) 

In the above equation a mesoscopic velocity scale 6u has been introduced which 
defines the smallest possible changes of the velocity. The stochastic process N , ” ( t )  
is completely specified by the joint probability distribution P( (N,” ) , t) which is the 
probability at time 1 of finding the set of numbers ( N , ” ) .  The time evolution of the 

piGbig,:;ry. *,sti;*ut;Gn p k by iFle foiiow.iiig majier q.uaiiori i6j 

where the shift operators E ,  are defined by 

E h F ( . .  . , N c ,  .. .) = F ( .  . .,A’: + 1,. . .) 
E y l F (  ... , N, ,. . .) = F ( .  . . , N i  - 1,. . .) h (4) 

> .  

By construction, the equations for the expectation values Bu(N,^)  obtained from the 
above master equation by taking the ‘thermodynamic limit’ 

6u - 0 and 6 u N i  =constant (5) 

and the limit 61 - 0 lead to Burgers’ equation (1). 
The master equation (3) was constructed within a many-particle picture. Since 

the stochastic process N,” is integer valued it can be interpreted as the number of 
fictitious velocity particles situated in cell A. Furthermore, the transitions of the states 
of the fluid may be viewed as one-particle jumps lrom cell X to a neighbouring one. 
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Within thii picture of a many-particle system, a positive number N,” > 0 is 
regarded as the number N,”+ of velocity particles; likewise, a negative number A’,” < 
0 h interpreted as the number I NG- I of antiparticles of velocity, i.e. we have 
N,” = N,”+ + N,”-. The fundamental importance of this picture immediately appears 
by interpreting the different terms in the master equation. Namely, the first two 
terms on the right-hand side describe the diffusion of a collective system of velocity 
particles and antiparticles, that is, a collective random walk, whereas the last two terms 

interaction of the latter. The rate at which one velocity particle jumps from one cell 
X to a neighbouring one is proportional to the number of pairs of velocity particles 
N,” in the cell A. Summing up, the many-particle picture allows the formulation of 
diffusion, as well as convection, in terms of one-step processes where each particle or 
antiparticle may jump only to a neighbouring cell. 

It should be noted that the master equation (3) is an equation for the transition 
probability of the stochastic process NG(t ) .  Only by fixing an appropriate initial 
probability distribution can one extract from it information about the probability 
distribution of different states of :hc system. Thus, this formalism naturally allows 
one to impose initial conditions in a probabilistic sense. 

Let U now turn our attention to the application of the mesoscopic description of 
the dynamics of fluids to the problem of turbulence. In order to model homogeneous 
turbulence it is first necessary to implement appropriate boundary and initial condi- 
tions of the Velocity. Firstly, we impose periodic boundary conditions by dividing the 
interval [O,Z] in a number M + 1 of cells labelled by the index X = 0 , 1 , 2 , .  . . , M 
(i.e. 61 = 2 / ( M  + 1) ) and by identifying the number N?+’ of velocity particles in 
the (M + 1)th cell with the number of particles N,” in the 0th cell, that is 

represni ae mnveciion veiocity priicies and aniipariicjes induce a nuniinear &- 

The statistical initial-value problem typical for homogeneous turbulence states that 
the random variables 6u  N C ( 0 )  should be uniformly distributed between the nor- 
malized velocity maxima -1 and + I .  By introducing an initial correlation length 1 
an appropriate initial condition reads 

where the qe for U = 0 , 1 , 2 1 , . ,  ., arc independent random numbers uniformly 
distributed over the interval [-1,+1] and the function i n t ( y )  denotes the integer 
part of y. 

It is clear, that as a consequence of the imposed initial condition (7) the mean 
value of the velocity (2) is identically zero. Thus, the physical properties expressing 
the character of homogeneous turbulence are directly related to higher moments of 
the stochastic process N,”(t) ,  and specially to the fluctuations naturally arising in 
the system. In our numerical investigations we studied the time development of the 
velocity correlation function Q ( p , t )  which in our formalism is consequen:ly defined 
as a second moment of the stochastic process iv,^(t) 

..,I .~ 
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The correlation Q ( p . 1 )  is computed assuming spatial homogeneity by taking the 
space average 

It might be interesting to note that the so-called Lohiansky constant [l] C, which 
Q defined in our formalism by the equation , 

is exactly conserved. This follows from the fact that C, is proportional to the 
expectation value of the square of the total number of velocity particles. This total 
particle number remains strictly constant since the above master equation does not 
contain any source or sink for velocity particles. Furthermore, it can be shown from 
the master equation (3) that Taylor’s relation [l] which in our formalism reads 

i 

. .  ... -1.0 I I I I I 
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

X 

Flgure 1. l ime development of a realization of the stochastic process N\ underlying 
the master equation (3) with random initial condition (7) for the Reynolds number 
R = 1000. ?he realization is shown at three dillerent limes: io = 0.0 (dolled CUNe), 
t t  = 0.2 (broken curve), and f r  = 0.8 (full cuwe). For the simulntion we have chosen 
6u = 0.001, M = ’200, and 1 = 5. Note, h a t  in this picture z = 61 X = ZX/(M+I), 
where A =  0 , 1 , 2  , . _ .  , M  + 1 .  
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is also satisfied up to terms of order o(612). Finally, an important quantity is the 
energy spectrum given by the equation 

Having k e d  the boundary and the initial conditions the dynamics of the system 
can now be studied by means of the method of stochastic simulation using stochastic 
time steps [7, 91. This method is particularly suited for the investigation of high- 
dimensional systems governed by master equations. In stochastic simulations one 
generates a sufficiently large number of realizations of the stochastic process underly- 
ing the master equation (3). The physical quantities defined above are then evaluated 
as time dependent ensemble averages. 

In figure 1 we display one realization of the stochastic process defined by the 
master equation (3) and the random initial cnndition (7) for the Reynolds number 
R = 1000 for three different times: t o  = 0.0, t ,  = 0.2, and 1 ,  = 0.8. The 
initial random velocity configuration { N G ( 0 ) )  develops a typical shock wave structure 
consisting of smoothly increasing ramps followed by sharp shocks. For longer times, 
the velocity decays due to dissipation. 

0.075 .,,, 

0 0.050 

... 0.000 

-0.025 / I I I 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

P 61 
Figure L The veloOty mrrelation function Q ( p ,  I )  for Ihe Reynolds number R = 1000 
evalualed according lo equalion (9) by averaging over 150 rralizalions lor four different 
limes: 1 ,  = 0.2 (dolled curve), 12 = 0.4  (full curve), 13 = 0.6 (broken cuwe), and 
t ,  = 0.8 (chain curve). For the sirxhastic simulation we have chosen M = 200. I = 5, 
and SU = 0.001. 

In figure 2 we show the correlation function evaluated according to (9) for four 
different times: t ,  = 0.2, t 2  = 0.4, t, = 0.6, and t ,  = 0.8. As can be seen, the 
correlation function exhibits the typical properties which are known from the theory 
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of homogeneous turbulence. Furthermore, we numerically checked Taylor's relation 
by determining the energy dissipated between the times t = 0.7 and i = 0.8 and by 
comparing it with the corresponding rime integral of the cuwature of the correlation 
function. The mean relative deviation between these two quantities was found to be 
less than 1%. 

k 
Figure 3. The normalized energy spectrum E(k,f)/E(O,t) computed aeeording lo 
equalion (12) [or four differenl limes: f l  = 0.2, t2 = 0.4. tg = 0.6 ,  and tr = 0 . 8 .  
lix panmeters of the dmuhlion were chosen BS in !he preceding figure. 

In figure 3 we present the normalized energy spectrum E( IC,  t ) / E ( O , t )  for R = 
1000 at the above times t , ,  t,, t3, and t ,  as a function of the wavenumber IC. The 
typical power law behaviour of the energy spectrum, E(k) - k-,, can be observed. 
This well known theoretical fact follows directly from the shock structure and reflects 
the presence of an energy cascade in this model. 

In this letter we have shown how to attack the problem of homogeneous turbu- 
lence within the framework of a recently proposed mesoscopic description of nuid 
dynamics. Thus, a discrete stochastic process has been constructed which allows a 
purely probabilistic description of Burgers' turbulence model. Having properly defined 
physical quantities as moments of the underlying stochastic process the mesoscopic 
approach reproduces well known theoretical results. Obviously, the same approach 
can be applied to turbulent fluid motion in higher dimensions as will be shown h 
h e r  work. 
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